Scalable Implicit Solver
Interoperability via the ESI
Standards Effort

Robert L. Clay
http://www.eterascale.com
18 October 2001
LACSI Symposium
Sante Fe, NM

o H
: >

Overview of this Presentation

e Background on the ESI effort — who, what, why

e Core object/component abstractions
» ESI base classes (base interfaces)
» Plug-&-play solvers and solver library interoperability

e Status and plans for the ESI effort

ESI Participants and URL'’S

e DOE, academic, and industrial initiative, building on
previous efforts.

» ANL, LANL, LBL/NERSC, LLNL, ORNL, SNL

» U.C. Davis, U. Indiana, U. Utah

» TeraScale, LLC

e Home web site: hitp://z.ca.sandia.gov/esi

» general background and voting info
» email archives

e Distribution site: hitp://www.eterascale.com/esi
» CVS repository, headers, and specification
» Reference implementation

e Technical forum: if-forum@z.ca.sandia.qov

What’s the ESI about?

e Standards effort for interface design, specification,
and prototyping:

» scalable sparse linear solution services and operators
» discretization abstractions (e.g., FEI, structured mesh, ...)
» languages to include C, C++, Fortran (JAVA?)

e We are developing an integrated system of object-
oriented interface specifications for shared, scalable,
solver components.

e Our focus is on obtaining a long-term solution

suitable for tera-scale applications (e.g., ASCI).
e We encourage participation in technical discussion
and development.

Sparse Linear Algebra -
do we need components?

Various Matrix
class/structure
Implementations

Application

Krylov Solver Preconditioner

results :
Multi-level

operations

Optimization Eigen-solver

TeraScale

Many-Many

This is bad for users - too difficult to swap A
solvers,and the solvers don'’t interoperate. —

Many-1-Many

L

T

Structured Structured Finite
Mesh1l Mesh2, ... Elements

Better for users - discretization abstraction
supports multiple solvers. However, solvers still &
don’t interoperate.

TeraScale

Many-1-1-Many

R TN DT
—
A\

Structured Structured Finite
Meshl Mesh?2, ... Elements
Eigen Krylov Multi-Level .

Better yet - discretization abstractions map into a
‘'standard’ solver space, where the solvers are
designed to interoperate.

Abstraction Layers

Engineering & Physics (Modeling) Codes

Linear Object Abstractions

ALE3D e Application codes

Physics Discretization Abstractions DiSCreu Zati on

Structured Structured Finite Ab)

Mesh1l Mesh2, ... Elements stractions

Eigen Krylov Direct Multi-Level .

Solver services

oo fiocl Solver s

Math Kernels

Lapack] eias [o

ESI Object Model

Core Object Behavior

ESI BaseClass Class Behavior - general

ESI BaseClassExtensions

Class Behavior -

ESI BaseClassExtensions specific extensions

ESI Objectimplementation User Component

Specificity of behaviour

ESI Inheritance Scheme
— Initial Proposal -

Map

Vector Solver Matrix Precond.

RowAccess PointerAccess

Matrix Interfaces

Matrix Matrix
Implementation 1 Implementation 2

ESI Inheritance Scheme
- Next Proposal -

Map Vector QOperator

Solver Matrix Precond.

Matrix Interfaces

RowAccess PointerAccess —

=

Matrix
Implementation 1 Implementation 2

ESI Inheritance Scheme - Actual

esi;:MapPartition

-

esi:MatrixRowPaointer Access

esi:Map

esi:MatrixFowReadAccess

esi:MatrixData

esi:MatrixRowWriteAccess

esi: Ohject

egi;.OperatorTranspose

esi: Operator egi.:PreconditionerTranspose

esi:Preconditioner

esi:Vector esi:Solver |- esi: Solverterative

eziVectorReplaceAccess

HWII»

TeraScale

Multiple Inheritance — good,
bad, or irrelevant?

esi: Ohject

esiOperatorTranspose= Scalar,Ordinal = | | esi:Preconditioner= Scalar Ordinal = | | esi Solver= Scalar,Ordinal =
egiPreconditionerTranspose= Scalar, Ordinal = egi Solverlterative= Scalar Ordinal =

e Why not have OperatorTranspose peer to Operator?

» QOperatorTranspose implementations will have both ‘apply’
and ‘applyTranspose’.
» Similar situation for Preconditioner classes.

Multiple Inheritance --
think of building-blocks

Inheriting multiple standard interfaces makes
MyQObject “plug-compatible” in multiple roles.

MyObject Interfacel Interface?2

Courtesy of Alan Williams (SNL)

Preconditioning a Solver with
an ES| Operator

Anything that supplies ESI Operator functionality
can be plugged in and used as a preconditioner.

MyPreconditioner
MySolver

ESI Operator Preconditioner Argument

MyMatrix ESI Operator

ESI Operator

N

ESI Operator
A

MySolver

ES I O p e r at O r Courtesy of Alan Williams (SNL)

TeraScale

ESI API characteristics

e Strengths

» ‘standard’, library-neutral interfaces — ESI compliant implementations
are interoperable, even if they come from different libraries

flexible, modular design — lots of possible combinations

binding to existing libs is straightforward

‘component’ ready — abstract interfaces w/ ‘query interface’ method

templated types (‘complex’ type support ‘easy’)
» extensible

»

>

v

>

v

»

»

solver developers can extend their list of users via ESI bindings
»

solver users can extend their list of solvers available through one API
e Weaknesses

» C++ only today — SIDL mapping close behind (C, Fortran, Java?)

» initial complexity of using the interfaces rather high (due to templated
types and multiple inheritance) — reference implementations help

» ‘common’ model/API can’t capture (and isn’t intended to either) the
full richness of all solver packages

2

TeraScale

cCurrent Status

ESI v1.0 interfaces have passed the first vote, and second vote
IS expected to pass w/in a month

» |t took ~3 years to get to the 1.0 spec!

» http://www.eterascale.com/esi has current distribution, including
reference implementation.

» Standard’s group is focused on wrapping up v1.0 release and
polishing up the package bindings and reference implementation.

e Work is underway or complete on several packages:
» TSC reference implementation (RLC)

ISIS++ bindings (ABW/BA)

Trilinos bindings (ABW/MH)

QMRPACK bindings (NN/MG/RLC)

SPOOLES 2.2 bindings (RLC/CA/MG/NN)
» PETSC (BS/SB/LCM)

>

v

»

»

»

Plans

e We’re working on a set of interfaces for FE / solver coupling —
derivative work of the FEI 2.0

» http://lwww.eterascale.com/fei-lite

» Modularized vs. monolithic FEI 2.0
» Augments ESI interfaces

» Could be an FEI 3.0, but will probably be proposed as part of the
ESI spec instead.

e We're also working on block matrix/vector abstractions:
» Hybrid block matrix/vector classes

» Generalized/derived from Daniel White’s 2x2 hybrid block classes.
Other abstractions we need to address:

» Structured mesh ‘loading’

» Eigen solver abstractions

» Better ways of handling ‘exceptions’
» Multi-level methods

